Combustion Research Facility

The Engine Combustion Department has provided detailed understanding of in-cylinder processes governing efficiency and pollutant formation for over 20 years.

Customers have access to unparalleled breadth and sophistication of facilities and diagnostics

Program Overview

- CRF's approach is to assemble experimental hardware that mimics a realistic engine geometry while providing optical access.
- Optical access is obtained through periscopes in an exhaust valve or through quartz windows in piston crowns, spacer plates and quartz cylinder liners.

CRF is working in partnership with engine manufacturers to enable more fuel efficient, cleaner burning engines.

Exhaust Gas Recirculation

EGR

Laser

Beam

Objective:

Develop and apply diagnostics to measure the distribution of EGR in the intake manifold of a high-speed, DI Diesel engine.

Approach:

- Experimental measurements in "generic" production engine.
- Focus on engine transients (acceleration and deceleration).
- Apply technique to measure EGR in production engines.

Principal Investigator: Bob Green

High-Speed, Direct-injection Diesel

Objective:

To provide the technological understanding required to enable HSDI diesel engines to meet the efficiency and emissions standards of a PNGV vehicle.

- Understand the physical processes and phenomena important to clean, efficient combustion in swirl-supported combustion systems.
- Develop physics-based models of the important combustion processes.
- Apply fundamental understanding and developed models to refine and optimize HSDI diesel engines.

Principal Investigator: Paul Miles

Port Fuel Injection

Objective:

Investigate gasoline additives for improved cold-engine drivability and emissions performance equivalent to or better than gasoline with higher and/or tightly controlled volatility specifications.

Approach:

- OH* Chemiluminence for burning rate.
- Fiber-optic spark plug ports for flame kernal development.
- Fast-flame ionization detector (FFID) for UHC.
- Pressure measurements for combustion performance

Principal Investigator: Pete Witze

Alternative Fuels

Objective:

Develop fundamental understanding of alternative fuel combustion processes in heavy-duty CI engines.

Approach:

Apply laser-based imaging diagnostics to state-of-the-art engine hardware with optical access

- shows pollutant formation when, where, how much.
- shows how changing fuel properties affects mixing and combustion processes.

Principal Investigator: Chuck Mueller

M85 (Glow plug on)

CN45 (Glow plug off)

Diesel Simulation Facility

Objective:

Investigate the effects of injector, in-cylinder and fuel parameters on diesel combustion/ emissions processes with emphasis on high power density engine conditions.

Approach:

 Utilize unique diesel combustion simulation capabilities that provide complete optical access to a wide range of conditions.

Pressure 2-35 MPa
Density 4-60 kg/m³
Temperature 600-1400 K

Composition inert - EGR - air - O₂ enriched

- Apply advanced diagnostics (Mie scattering, LII, etc.)
- Develop physics-based models of diesel spray processes.

Principal Investigator: Dennis Siebers

Heavy-Duty Diesel Engine

Objective:

To provide the fundamental understanding needed to help manufacturers reduce emissions (soot & NOx) and improve performance.

Approach:

- Utilize a optically accessible engine derived from a heavy-duty Cummins truck engine.
- Apply multiple planar imaging (LIF, LII, Mie, Rayleigh, etc.) and other diagnostics to the in-cylinder processes.

Green: OH (LIF) Red: Soot (LII)

Principal Investigator: John Dec

Gasoline Direct Injection (side injection)

Objective:

Investigate fuel/air mixing and combustion in a spark ignition, direct injection engine with a side-mounted injector.

Approach:

- Probe spray and fuel vapor evaluation using laser elastic scattering and laser-induced fluorescence.
- Investigate combustion characteristics using flame luminosity (color and total intensity), and laser-induced incandescence.

Principal Investigator: Greg Fiechtner

Particulate Matter Diagnostics

Objective:

Develop new diagnostic tools for the *real-time* measurement of nano-sized particles.

Approach:

- Laser-induced incandescence (LII)
- Laser-induced vaporization/elastic scattering (LIVES)
- Multi-angle elastic scattering (Rayleigh-Gans-Debye theory)
- Calibration with scanning mobility particle sizer (SMPS)

Principal Investigator: Pete Witze

Hydrogen Lean Burn Engine Program

Objective:

Development of an internal combustion engine fueled on hydrogen for stationary and transportation applications. Optimize engine operation for maximum efficiency with near zero emissions.

Approach:

• Maximize indicated thermodynamic efficiency by using unique combustion characteristics of hydrogen air flames.

